Model
Load Model:
Tflite
provides us loadModel
method to load our model. It takes two values model file path and labels file path.
Future loadModel() async {
Tflite.close();
await Tflite.loadModel(
model: "assets/ssd_mobilenet.tflite",
labels: "assets/ssd_mobilenet.txt");
}
Run Model:
In this method, we will run the model using Tflite
. Here we are using the live stream of the image so we will have to use the detectObjectOnFrame method to run our model.
runModel() async {
recognitionsList = await Tflite.detectObjectOnFrame(
bytesList: cameraImage.planes.map((plane) {
return plane.bytes;
}).toList(),
imageHeight: cameraImage.height,
imageWidth: cameraImage.width,
imageMean: 127.5,
imageStd: 127.5,
numResultsPerClass: 1,
threshold: 0.4,
);
setState(() {
cameraImage;
});
}
Comments
Post a Comment