Model
Load Model: Tflite provides us loadModel method to load our model. It takes two values model file path and labels file path. Future loadModel() async { Tflite. close (); await Tflite. loadModel ( model: "assets/ssd_mobilenet.tflite", labels: "assets/ssd_mobilenet.txt"); } Run Model: In this method, we will run the model using Tflite . Here we are using the live stream of the image so we will have to use the detectObjectOnFrame method to run our model. runModel() async { recognitionsList = await Tflite. detectObjectOnFrame ( bytesList: cameraImage.planes.map((plane) { return plane.bytes; }).toList(), imageHeight: cameraImage.height, imageWidth: cameraImage.width, imageMean: 127.5, imageStd: 127.5, numResultsPerClass: 1, threshold: 0.4, ); setState(() { cameraImage; }); }